Using N Timing to Enhance Yield and NUE in Dryland and Irrigated Corn

RAY ASEBEDO AND DAVE MENGEL KANSAS STATE UNIVERSITY MANHATTAN, KS

Objectives

- Measure the impact of soils, weather, and N application timing on optimum N rate, N uptake, NUE and yield in irrigated and dryland corn production.
- Determine if the use of preplanned split application systems, or split application systems utilizing crop sensors or a professional Agronomists assessment of N need late in the growing season can improve NUE compared to a fixed rate system using current N recommendations applied early in the growing season.

Experimental Design

- Project is designed to run from 2013 through 2015.
- Three irrigated and one dryland site
 - •Irrigated sites at KSU experiment fields
 - × Two on coarse textured soils
 - ×One on well drained silt loam
 - Dryland site on excellent farmer

Experimental Design

- Experimental Design used was a RCB
- Four replications
- Individual Plots size was 10' x 40'

Sampling

- o o-6" and o-24" soil samples prior to planting
- Tested for O.M., Mehlich-3 P, K, pH, Zn, NO₃, NH₄, Cl, S

• Canopy reflectance was measured at multiple growth stages.

• V-4 through R-1

• Ear leaf samples @ R-1 and Whole Plants @ R-5

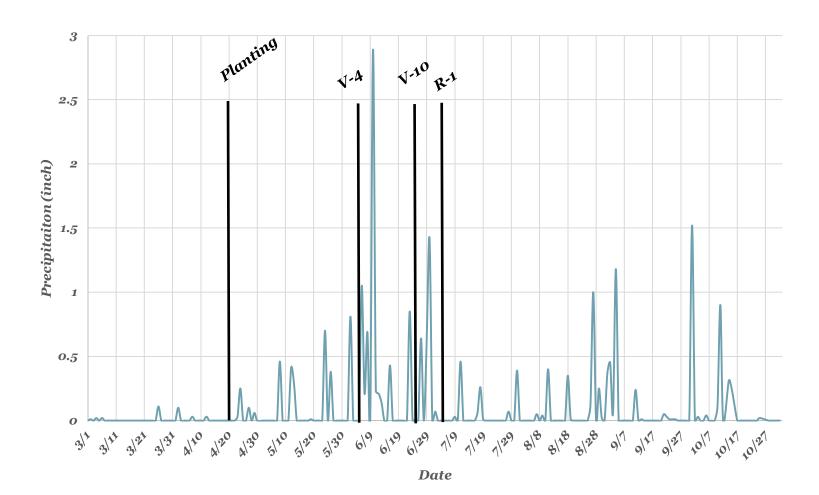
- 20 ear leaves and 20 whole plants per plot
- Tested for N content only

Treatments Used

						Total N
Treatment	Starter N	Emergence	V-4 N	V-10 N	R1 N	applied
1	20*	0	0	0	0	20
2	20	60	0	0	0	80
3	20	120	0	0	0	140
4	20	180	0	0	0	200
5	20	0	60	0	0	80
6	20	0	120	0	0	140
7	20	0	180	0	0	200
8	20	0	0	60	0	80
9	20	0	0	120	0	140
10	20	0	0	180	0	200
Sensor E	20	0	0	Sensor	0	20 +
12	20	0	60	0	180	260
13	20	0	60	0	60	140
14	20	0	60	0	120	200
Sensor L	20	0	60	0	Sensor	80 +
16	20	0	60	0	Agronomist	80 +
17 U/ESN	20	0	0	120	0	140

Basic Soil and Site Information

Location	Sterling	Partridge	Scandia	Rossville
Soil Type	Saltcreek and Naron Fine Sandy loams	Nalim loam	Crete silt loam	Eudora sandy loam
Irrigation	No	Yes	Yes	Yes
Previous Crop	Soybeans	Soybeans	Soybean s	Soybeans
Tillage Practice	No-till	Convention al	Ridge Till	Convention al

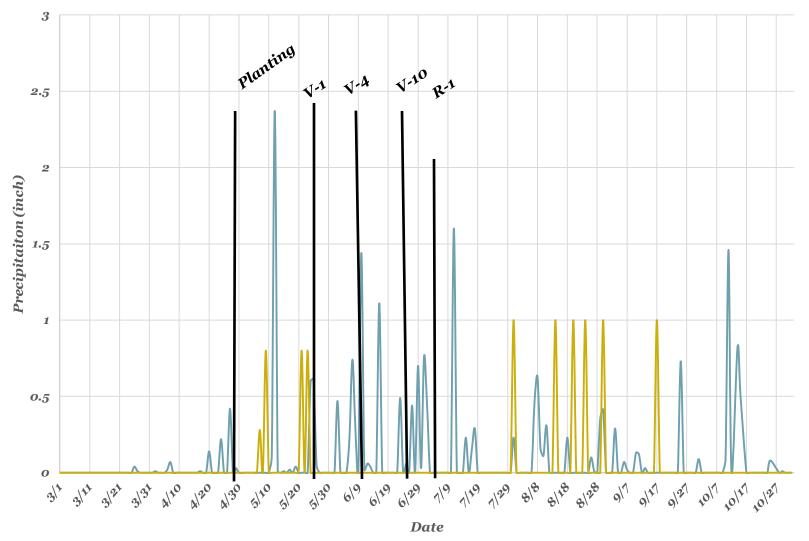

Dates and Management Information

Location	Sterling	Partridge	Scandia	Rossville
Irrigation	No	Yes	Yes	Yes
Residual NO ₃ lb. N ac ⁻¹	26	46	48	24
Corn Hybrid	Pioneer 35F-50 Refuge	Dekalb DK 64-69	Pioneer P1602	Producers H9138 3000GT
Plant Population plants ac ⁻¹	19000	25700	33,500	30,400
Planting Date	4/20/14	4/30/14	5/5/14	4/23/14
First Treatment at Emergence	5/14/14	5/21/14	5/30/14	4/29/14
Second Treatment V- 4	6/6/14	6/6/14	6/16/14	6/6/14
Third Treatment V-10	6/24/14	6/24/14	7/1/14	6/24/14
Last Treatment R-1	7/3/14	7/2/14	8/4/14	7/8/14
Harvest Date	9/1/14	10/16/14	11/11/14	9/17/14

Results: Sterling, dryland

- Weather in 2014 was dry early and late but good during mid-May to mid-July.
 - Excessive rain leading to some loss during June
- Yields were excellent for dryland sand at 156 bu/acre
- Variation was low, CV for yield 4.5%
- Significant response to N, but first increment was enough.
- However, differences were small, large amount of mineralized N which is common on our low SOM sands with rain

2014 Sterling Rainfall



corn grain yield, 2014, dryland, Sterling, KS

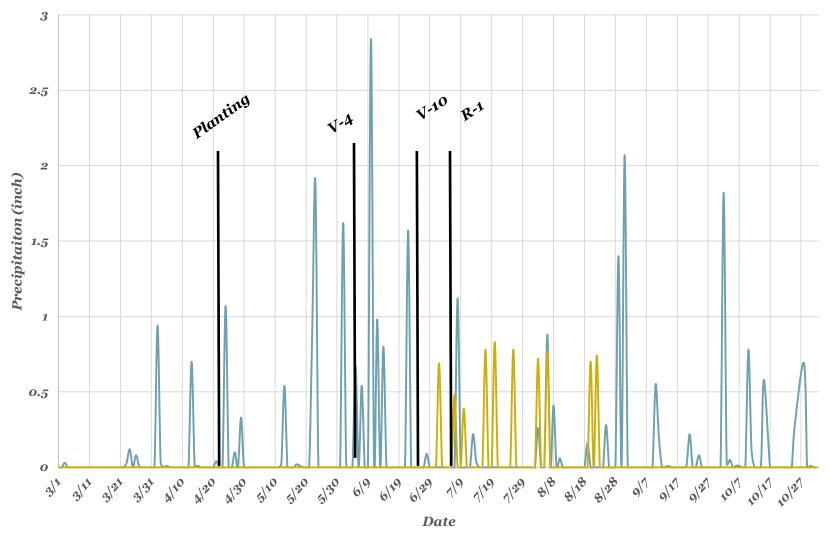
	Starter	Early				Total N	
Treatment	Ν	Ν	V-4 N	V-10 N	R1 N	Applied	2014 Yield
1	7	0	0	0	0	7	144f
2	7	60	0	0	0	67	154bcd
3	7	120	0	0	0	127	155 bcd
4	7	180	0	0	0	187	157 abc
5	7	0	60	0	0	67	148 ef
6	7	0	120	0	0	127	160 abc
7	7	0	180	0	0	187	155 bcd
8	7	0	0	60	0	67	157 abc
9	7	0	0	120	0	127	154 bcd
10	7	0	0	180	0	187	160 abc
Sensor, V-10	7	0	0	0	0	7	148 def
12	7	0	60	0	180	247	161 ab
13	7	0	60	0	60	127	158 abc
14	7	0	60	0	120	187	159 abc
Sensor, R1	7	0	60	0	0	67	153 cde
16, Agron	7	0	60	0	0	67	160 abc
17 U/ESN	7	0	0	120	0	127	164 a

Results: Partridge, irrigated

- Weather alternated from hot and dry, to wet and cold.
- Yields were lousy for irrigated sand at 85-128 bu/acre
- Variation was high, CV for yield 11.5%
- Significant response to N, N rate, and N timing was observed.
- Later applications, starter plus V-10 were best

2014 Partridge Rainfall and Irrigation

corn grain yield, 2014, irrigated, Partridge, KS

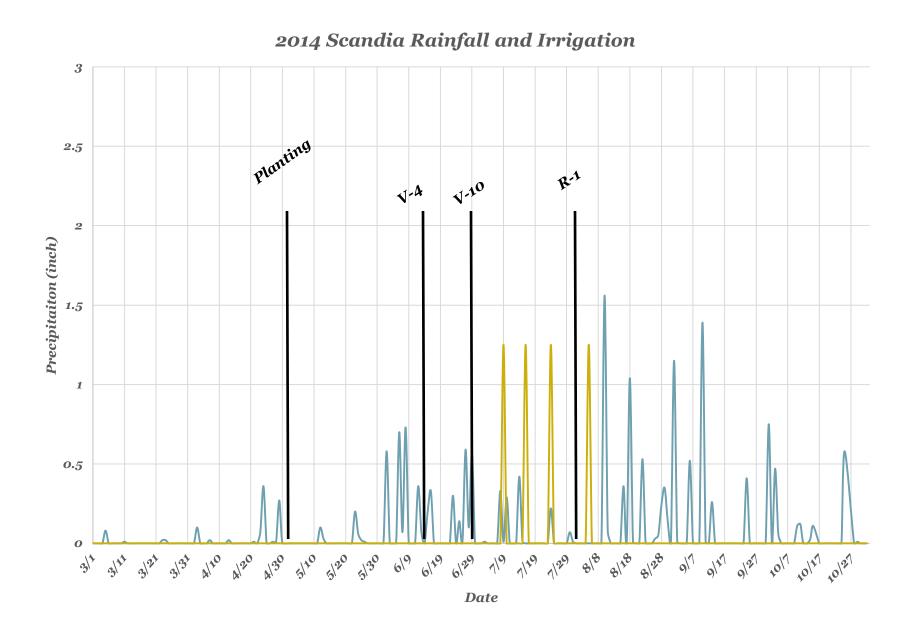

 	Starter	Early				Total N	
Treatment	Ν	Ν	V-4 N	V-10 N	R1 N	Applied	2014 Yield
1	20	0	0	0	0	20	85 hi
2	20	60	0	0	0	80	96 fghi
3	20	120	0	0	0	140	94 fghi
4	20	180	0	0	0	200	96 fghi
5	20	0	60	0	0	80	86 ghi
6	20	0	120	0	0	140	101 def
7	20	0	180	0	0	200	99 defg
8	20	0	0	60	0	80	104 cdef
9	20	0	0	120	0	140	128 a
10	20	0	0	180	0	200	125 ab
Sensor V10	20	0	0	0	0	20	82 i
12	20	0	60	0	180	260	118 abc
13	20	0	60	0	60	140	111 bcd
14	20	0	60	0	120	200	111 bcd
Sensor R1	20	0	60	0	0	80	97 fghi
16, Agron	20	0	60	0	0	80	94 fghi
17 U/ESN	20	0	0	120	0	140	116 abc

Results: Rossville, irrigated

- Weather was wet and cool early, hot and dry late.
 - Significant rain to cause loss from pre-emerge and sidedress N.
- Yields were fair for irrigated sand at 180-190 bu/acre
- Variation was high, CV for yield 13.8%

o Significant soil variability

- Significant response to N, N rate, and N timing was observed.
- Later applications, starter plus V-10 and splits were best


2014 Rossville Rainfall and Irrigation

corn grain yield, 2014, irrigated, Rossville, KS

		Starter	Early				Total N		
_	Treatment	Ν	Ν	V-4 N	V-10 N	R1 N	Applied	2014 Yield	
	1	20	0	0	0	0	20	97 e	
	2	20	60	0	0	0	80	165 bcd	
	3	20	120	0	0	0	140	151 dc	
	4	20	180	0	0	0	200	175 abc	
	5	20	0	60	0	0	80	139 d	
	6	20	0	120	0	0	140	168 bc	
	7	20	0	180	0	0	200	187 ab	
	8	20	0	0	60	0	80	154 cd	
	9	20	0	0	120	0	140	172 ab	
	10	20	0	0	180	0	200	188 ab	
	Sensor, V-10	20	0	0	0	0	20	111 e	
	12	20	0	60	0	180	260	197 a	
	13	20	0	60	0	60	140	183 ab	
	14	20	0	60	0	120	200	192 ab	
	Sensor, R1	20	0	60	0	20	100	167 bc	
	16, Agron	20	0	60	0	45	125	174 abc	
	17 U/ESN	20	0	0	120	0	140	186 ab	

Results: Scandia, irrigated

- Weather was dry early and wet late.
 - Stored soil water carried the crop early
 - Irrigation starting in early July saved the day
 × Only applied 5-6 inches of water
- Yields were good, up to 230 bu/acre
- Variation was low, CV for yield 4.3%
- Significant response to N and N timing was observed.
- Later applications, starter plus V-10, or splits were best

corn grain yield, 2014, irrigated, Scandia, KS

 	Starter	Early				Total N	
Treatment	Ν	Ν	V-4 N	V-10 N	R1 N	Applied	2014 Yield
1	20	0	0	0	0	20	160 h
2	20	60	0	0	0	80	192 g
3	20	120	0	0	0	140	211 ef
4	20	180	0	0	0	200	216 de
5	20	0	60	0	0	80	202 fg
6	20	0	120	0	0	140	229 abc
7	20	0	180	0	0	200	230 ab
8	20	0	0	60	0	80	195 g
9	20	0	0	120	0	140	216 de
10	20	0	0	180	0	200	229 abc
Sensor V-10	20	0	0	0	0	20	148 def
12	20	0	60	0	180	260	233 a
13	20	0	60	0	60	140	218 bcd
14	20	0	60	0	120	200	223 abcd
Sensor R1	20	0	60	0	30	110	221 bcde
16, Agron	20	0	60	0	30	80	210 ef
17 U/ESN	20	0	0	120	0	140	225 abcd

Observation and Conclusions

Rainfall patterns were not unusual

- Early spring is often dry
- Late May, June and early July are typical high rainfall months
- Rainfall comes in thunderstorms, so often intense
- Timing has a history of success but not often done

Delayed application or split application worked best

- On both sands and silt loams
- Sensors aren't quite ready for prime time yet to predict late season N needs
- A good Agronomist can help, especially using
 - Fired leaf counts
 - o Chlorophyll meter
 - Sensors (at some point)

Things I would do in the future: both research and production

- Incorporate fertigation concepts with more late applications, especially on coarse textured soils
 - o Todays hybrids take up N during grain fill
 - Similar to many of the hybrids we used in the 70's & 80's
 - More applications simulating adding N with the system
 - Use ½ the N early, balance V-16 through early fill.
 - Be willing to adjust N rates in response to environment
- Look at tools to guide the Agronomist

> Fired leaf counts: systems exist

Questions? dmengel@ksu.edu ara4747@ksu.edu

MOLLEY

